Notes on Artificial Intelligence Topics. These notes were born for myself but I hope they can be useful for others.
Search This Blog
Showing posts with label DTFT. Show all posts
Showing posts with label DTFT. Show all posts
Tuesday, May 3, 2011
2. Discrete Time Fourier Transform
Recall that if x(n) is absolutlely summable, that is, $\sum_{-\infty}^{+\infty} |x(n)| < \infty$ than its Discrete-Time Fourier Transform is given by:
\[
X(e^{j \omega})=\sum_{n=- \infty}^{+ \infty} x(n) \cdot e^{-j \cdot \omega \cdot n} \tag{3.1}
\]
This function transforms a discrete signal $x(n)$ into a complex-valued continuous function $X(e^{j \omega})$.
${\bf Matrix Implementation}$
If $x(n)$ is a finite duration sequence, we can use MATLAB to compute the Discrete Time Fourier Transform (DTFT) $X(e^{j\omega})$ numerically at any frequency $\omega$.
Let assume that the sequence x(n) has N samples between $n_1 \leq n \leq n_N$ we can define:
\[\omega_k =\frac{\pi}{M}k, \qquad k=0,1,....,M\]
which are (M+1) frequencies between $[0, \pi]$. Then (1) can be written as:
\[
X(e^{j\omega_k})=\sum_{r=1}^{N} x(n_r) \cdot e^{-j \cdot \omega_k \cdot n_r} = \sum_{r=1}^{N} x(n_r) \cdot e^{-j \cdot \frac{\pi}{M} k \cdot n_r}, \qquad k=0,...,M \tag{3.2}
\]
Let's define the vector $\mathbf{X} = \begin{bmatrix} X(e^{j\omega_0}) \\ \vdots \\ X(e^{j\omega_M}) \end{bmatrix}$ where the k-th element $X(e^{j\omega_k})$ has the below expression:
\[X(e^{j\omega_k})= [ x(n_1) \cdot e^{-j \cdot \frac{\pi}{M}\cdot k \cdot n_1} + \ldots + x(n_N) \cdot e^{-j \cdot \frac{\pi}{M}\cdot k \cdot n_N} ] \]
if we define the matrix $\mathbf{W}=\begin{bmatrix} W_0\\ \vdots \\W_M \end{bmatrix}$ where the k-th row $W_k$ has the below expression:
\[ W_k = \begin{bmatrix} e^{-j \cdot \frac{\pi}{M}\cdot k \cdot n_1}, \ldots, e^{-j \cdot \frac{\pi}{M}\cdot k \cdot n_N} \end{bmatrix} \]
and $\mathbf{x(n)} = \begin{bmatrix} x(n_1) \\ \vdots \\ x(n_N) \end{bmatrix}$, we can write (3.2) as follow:
\[\mathbf{X} = \mathbf{W} \cdot \mathbf{x}\]
Let's consider the row vectors ${\bf k}$ and ${\bf n}$ that represent, respectively, the index of the frequency and for the time.
\[ \begin{matrix}
\mathbf{k}= \begin{bmatrix} 0, 1, \ldots, M\end{bmatrix}\\
\mathbf{n}= \begin{bmatrix} n_1, n_2, \ldots, n_N\end{bmatrix}
\end{matrix} \]
the product $\mathbf{k^T \cdot n}$ is equal to:
\[ \begin{bmatrix} 0 \\1 \\ \vdots \\M\end{bmatrix} \cdot \begin{bmatrix} n_1 & n_2 & \ldots & n_N\end{bmatrix} = \begin{bmatrix} 0 & 0 & \ldots & 0 \\ n_1 & n_2 & \ldots & n_N \\ \vdots & \vdots & \ddots & \vdots \\ M \cdot n_1 & M \cdot n_2 & \ldots & M \cdot n_N \end{bmatrix} \]
so we can rewrite $\mathbf{W}$
\[ \mathbf{W} = \begin{bmatrix} W_0 \\ W_1 \\ \vdots \\ W_M \end{bmatrix} = \begin{bmatrix} e^{-j \cdot \frac{\pi}{M}\cdot 0 \cdot n_1} \ldots e^{-j \cdot \frac{\pi}{M}\cdot 0 \cdot n_N} \\ \vdots \\ e^{-j \cdot \frac{\pi}{M}\cdot M \cdot n_1} \ldots e^{-j \cdot \frac{\pi}{M}\cdot M \cdot n_N} \end{bmatrix} =
exp[-j \cdot \frac{\pi}{M} \cdot \mathbf{k^T \cdot n}] \]
finally the complete matrix form for DTFT is
\[\mathbf{X} = exp[-j \cdot \frac{\pi}{M} \cdot \mathbf{k^T \cdot n}] \cdot \mathbf{x} \tag{3.3} \]
Subscribe to:
Posts (Atom)