Processing math: 100%

Search This Blog

Tuesday, May 3, 2011

2. Discrete Time Fourier Transform



Recall that if x(n) is absolutlely summable, that is, \sum_{-\infty}^{+\infty} |x(n)| < \infty than its Discrete-Time Fourier Transform is given by:
X(e^{j \omega})=\sum_{n=- \infty}^{+ \infty} x(n) \cdot e^{-j \cdot \omega \cdot n} \tag{3.1}
This function transforms a discrete signal x(n) into a complex-valued continuous function X(e^{j \omega}).

{\bf Matrix Implementation}
If x(n) is a finite duration sequence, we can use MATLAB to compute the Discrete Time Fourier Transform (DTFT) X(e^{j\omega}) numerically at any frequency \omega.

Let assume that the sequence x(n) has N samples between n_1 \leq n \leq n_N we can define:
\omega_k =\frac{\pi}{M}k, \qquad k=0,1,....,M
which are (M+1) frequencies between [0, \pi]. Then (1) can be written as:

X(e^{j\omega_k})=\sum_{r=1}^{N} x(n_r) \cdot e^{-j \cdot \omega_k \cdot n_r}  = \sum_{r=1}^{N} x(n_r) \cdot e^{-j \cdot \frac{\pi}{M} k \cdot n_r}, \qquad k=0,...,M \tag{3.2}

Let's define the vector \mathbf{X} = \begin{bmatrix} X(e^{j\omega_0}) \\ \vdots \\ X(e^{j\omega_M}) \end{bmatrix} where the k-th element X(e^{j\omega_k}) has the below expression:

X(e^{j\omega_k})= [ x(n_1) \cdot e^{-j \cdot \frac{\pi}{M}\cdot k \cdot n_1} + \ldots + x(n_N) \cdot  e^{-j \cdot \frac{\pi}{M}\cdot k \cdot n_N} ]

if we define the matrix \mathbf{W}=\begin{bmatrix} W_0\\ \vdots \\W_M \end{bmatrix} where the k-th row W_k has the below expression:

W_k = \begin{bmatrix} e^{-j \cdot \frac{\pi}{M}\cdot k \cdot n_1}, \ldots, e^{-j \cdot \frac{\pi}{M}\cdot k \cdot n_N} \end{bmatrix}

and \mathbf{x(n)} = \begin{bmatrix} x(n_1) \\ \vdots  \\ x(n_N) \end{bmatrix}, we can write (3.2) as follow:

\mathbf{X} = \mathbf{W} \cdot \mathbf{x}

Let's consider the row vectors {\bf k} and {\bf n} that represent, respectively, the index of the frequency and for the time.
\begin{matrix} \mathbf{k}= \begin{bmatrix} 0, 1, \ldots, M\end{bmatrix}\\ \mathbf{n}= \begin{bmatrix} n_1, n_2, \ldots, n_N\end{bmatrix} \end{matrix}
the product \mathbf{k^T \cdot n} is equal to:
\begin{bmatrix} 0 \\1 \\ \vdots \\M\end{bmatrix} \cdot \begin{bmatrix} n_1 & n_2 & \ldots & n_N\end{bmatrix} = \begin{bmatrix} 0 & 0 & \ldots & 0 \\ n_1 & n_2 & \ldots & n_N \\ \vdots & \vdots & \ddots & \vdots \\ M \cdot n_1 & M \cdot n_2 & \ldots & M \cdot n_N \end{bmatrix}
so we can rewrite \mathbf{W}

\mathbf{W} = \begin{bmatrix} W_0 \\ W_1 \\ \vdots \\ W_M \end{bmatrix} = \begin{bmatrix} e^{-j \cdot \frac{\pi}{M}\cdot 0 \cdot n_1} \ldots e^{-j \cdot \frac{\pi}{M}\cdot 0 \cdot n_N} \\ \vdots \\ e^{-j \cdot \frac{\pi}{M}\cdot M \cdot n_1} \ldots e^{-j \cdot \frac{\pi}{M}\cdot M \cdot n_N} \end{bmatrix} =  exp[-j \cdot \frac{\pi}{M} \cdot \mathbf{k^T \cdot n}]

finally the complete matrix form for DTFT is
\mathbf{X} = exp[-j \cdot \frac{\pi}{M} \cdot \mathbf{k^T \cdot n}] \cdot \mathbf{x} \tag{3.3}

No comments:

Post a Comment